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Abstract 
Many real-time database systems are now being 

used in safety-critical applications, in which human lives 
or expensive machinery may be at stake. Transactions in 
real-time databases should be scheduled considering 
both data consistency and timing constraints. In addi- 
tion, a real-time database must adapt to changes in the 
operating environment and guarantee the completion of 
critical tasks. The effects of scheduling decisions and 
concurrency control mechanisms for  real-time database 
systems have typically been demonstrated in a simulated 
environment. In this paper we present a functional real- 
time database servel; called DRDB, which provides an 
operational platform for  research in distributed real- 
time database issues. 

1.Introduction 
Real-time database systems (RTDBS) are essen- 

tial for applications that are both data intensive and sub- 
ject to real-time constraints, such as defense systems, 
industrial automation, aerospace, and network manage- 
ment. Appropriate methods and techniques for designing 
and implementing database systems that take timing con- 
straints into account are playing an ever increasing role 
in determining the success or failure of real-time sys- 
tems. In recent workshops [RTAS, RTDB], developers of 
real-time systems have pointed to the need for basic 
research in database systems that satisfy timing con- 
straint requirements in collecting, updating, and retriev- 
ing shared data. 

The distinct feature of RTDBS, as compared to 
traditional databases, is the requirement to satisfy the 
timing requirements associated with transactions. The 
correctness of the system depends not only on the logical 
results but also on the time within which the results are 
produced. Transactions must be scheduled in such a way 
that they can be completed before their corresponding 
deadline expires.Most database systems are not designed 
for real-time applications and lack features required sup- 
porting real-time transactions. Very few conventional 
database systems allow users to specify temporal con- 
straints or ensure that the system meets those constraints. 
In RTDBS, it is not always possible to guarantee all tem- 
poral constraints because of the unpredictable data 
accesses, so the system must strive to minimize the num- 
ber of constraints which are violated [BLS97, Kim961. 

Applying real-time principles to a distributed 
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environment complicates the problem [Son96]. The 
major issue to consider is the communication between 
the database servers and clients in a distributed system. 
The added communication cost makes the timing 
property of requests to remote servers more 
unpredictable. Therefore an operation on one relation at 
a local site will take a shorter period of time than the 
same operation on a relation located at a remote site. 

The design and evaluation of RTDBS present 
challenging problems. In this paper we describe an oper- 
ational distributed real-time database system, called 
DRDB. In addition, we examine issues involving the 
development of credible run-time estimates for use in 
real-time database scheduling decisions and the use of 
timing requirements in performing database operations. 

2. Issues in Temporal Functionality 
One of the major goals in designing RTDBS is to 

minimize the probability of transactions failing to meet 
their respective deadlines. Various approaches have been 
investigated to develop database systems to achieve this 
goal [Best96, Lam97, Lehr95, Son921. They attempt to 
make scheduling decisions based mainly on transaction 
attributes such as priority, release time and deadline. 
These transaction attributes are critical pieces in the 
scheduling puzzle, but they are not the only attributes 
available for use in solving the problem. One key 
attribute absent from most scheduling decisions is a via- 
ble transaction run-time estimate. Numerous research 
efforts have explored the possibility of using nin-time 
estimates in the scheduling decision process. Run-time 
estimates have been used in workload policies, priority 
assignment policies, conflict resolution policies, and I/O 
scheduling policies [Abb92]. These run-time estimates 
have typically been model-driven. The results derived 
have shown that run-time estimates are a credible option 
for use in scheduling decisions. However, the derivation 
and use of run-time estimates in a functional real-time 
database has not been explored extensively. If the sched- 
uler can be provided with an estimate of transaction exe- 
cution time, that information can be used in determining 
which transaction is closest to missing a deadline, and 
hence should be given higher priority, or which transac- 
tion can be delayed without risking violation of their tim- 
ing constraints. In addition, run-time estimates can be 
used by the scheduler to initially screen transactions to 
determine eligibility. All transactions with feasible dead- 
lines (release time plus run-time estimate is less than 
deadline) remain in the system, while all ineligible trans- 
actions are aborted. 
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Often a significant portion of a real-time database 
is highly Berishable in the sense that it has value only if 
it is used in time. In addition to deadlines, therefore, 
other kinds of temporal information should be associated 
with data as well as transactions in RTDBS. For example, 
each sensor input could be indexed by the time at which 
it was taken. Once entered in the database, data may 
become out-of-date if it is not updated within a certain 
period of time. To quantify this notion of age, data may 
be associated with a valid interval. The valid interval 
indicates the time interval after the most recent updating 
of a data object during which a transaction may access it 
with 100% degree of accuracy. What occurs when a 
transaction attempts to access a data object outside of its 
valid interval is dependent upon the semantics of data 
objects and the particular implementation. For some data 
objects, for instance, reading it out of its valid interval 
would result in 0% accurate values. In general, each data 
object can be associated with a validity curve that repre- 
sents its degree of validity with respect to the time 
elapsed after the data object was last modified. The sys- 
tem can compute the validity of data objects at the given 
time, provided the time of last modification and its valid- 
ity curve. 

A real-time transaction should include its tempo- 
ral consistency requirement which specifies the validity 
of data values accessed by the transaction. For example, 
if the temporal consistency requirement is 10, it indicates 
that data objects accessed by the transaction cannot be 
older than 10 time units relative to the start time of the 
transaction. This temporal consistency requirement can 
be specified as either hard or soft, just as deadlines are. If 
it is hard, an attempt to read an invalid data object (i.e., 
out of its valid interval) will cause the transaction to be 
aborted. 

While a deadline can be thought of as providing a 
time interval as a constraint in the future, temporal con- 
sistency specifies a temporal window as a constraint in 
the past. As long as the temporal consistency require- 
ment of a transaction can be satisfied, the system can be 
able to provide an answer using available (may not be up- 
to-date) information. The answer may change as valid 
intervals change with time. In a distributed database sys- 
tem, sensor readings may not be reflected to the database 
at the same time, and may not be reflected consistently 
due to the delays in processing and communication. A 
temporal data model for real-time database systems must 
therefore be able to accommodate the information that is 
partial and out-of-date. One of the aspects that distin- 
guishes a temporal data model for a real-time database 
systems from that of conventional database syslems is 
that values in a real-time database system are not neces- 
sarily correct all the time, and hence the system must be 
selective in interpreting data values [ O Z S O ~ ~ ] .  

3.Implementation of DRDB 
DRDB is designed along the client-server para- 

digm. It has a multiple-threaded servers that are capable 
of accepting requests from multiple clients. DRDB was 
designed with the goal of providing a temporal platform 
for conducting research on real-time database issues. 
This is a major and natural step forward from ]perfor- 
mance analysis conducted in a simulated databasle envi- 

ronment. Simulated environments are not a substitute for 
functional systems. They fail to account for all factors 
found in an operational system, and tend to be more sub- 
jective in the sense that system parameters can be readily 
modified. An operational system cannot be modified to 
fit the real-time mechanism being analyzed. The results 
derived from an operational real-time database system 
provide us with a set of more realistic performance mea- 
surements. 

The DRDB server is the heart of the database 
management system. The server contains an infinite loop 
that accepts high-level database requests from multiple 
clients. The requests come in as packets. The DRDB sys- 
tem provides two different types of packets: cull packets 
and retum packets. The call packet is created by the cli- 
ent and is the database transaction. The call packet con- 
tains all the information that the server needs to carry out 
the desired database access operation, including the tim- 
ing constraint and temporal consistency specifications 
associated with the transaction. A different timing con- 
straint can be specified for each transaction submitted, or 
the client can use the default timing constraint previously 
established. The DRDB client thread passes the call 
packet forward to the DRDB server. 

Once a command is transferred to the server, it is 
passed to the DRDB scheduler running on that server. 
The DRDB scheduler uses a run-time estimate 
evaluation technique to determine if the system can 
provide the client with the information requested within 
the timing constraint specified. The DRDB server spins- 
off a separate DRDB thread to execute the transaction if 
the deadline is feasible. The client will be informed, and 
no thread spun-off if the deadline can not be met. The 
thread executes until completion and then forwards the 
call packet back to the client or the requesting server 
which forwarded the command to this server. A 
transaction is not preempted by the DRDB thread even if 
the deadline is missed. Along with the results of the 
transaction, the client will be informed that the deadline 
is missed, along with the results of the transaction. 

Since DRDB is a distributed database, a client can 
issue a command to manipulate data at a remote site. As 
part of the preprocessing, the server first examines the 
command and identifies all relations needed for 
processing it. The server then looks in the relation table 
which maps all relations in the database to the site where 
they reside. The server forwards the command if the 
specified relation in the command resides at a remote 
site. 

A relation table for a server is created when that 
server is initiated. The first operation a new server 
performs is reading the relation files in its own directory 
and storing these relations in the relation table. The 
server then reads a global address file which contains the 
name and port numbers of all currently running servers. 
The new server uses these port numbers to notify each 
server it has begun execution. The new server sends its 
list of relations so that other servers can update their 
relation tables. Other servers send back their lists of 
relations to the new server to be included in its relation 
table. The new server is then ready to accept requests 
from clients. 
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DRDB also associates a temporal ‘valid time’ 
attribute with each relation. This is inherent to the sys- 
tem, requiring no client involvement. The temporal 
attribute is attached to each tuple of a relation and is com- 
parable to a timestamp that represents the valid time that 
the stored information models reality. The client cannot 
set or modify the values associated with the valid time 
attribute. However, this attribute can be manipulated for 
use in specifying transaction temporal consistency 
requirements. For example, 

select trk-num from trackfile where valid time < 1 
will return only the track numbers (trk-num) of tuples 
inserted or updated in the database relation (trackfile) 
within the last second of the transaction release time. 
DRDB also allows users of the system to manipulate the 
valid time attribute in output displays and in creating and 
manipulating relations that are similar to those found in 
historical temporal database systems [ O Z S O ~ ~ ] .  A rela- 
tion without the temporal attribute valid time attribute 
can be formed by projecting or selecting attributes other 
than valid time into a new relation. The DRDB system 
processes such relations without attaching any temporal 
meaning to them. 

The DRDB system employs a strict two-phase 
locking (2PL) protocol for concurrency control [Ber87]. 
The strict locking protocol was selected for concurrency 
control because of its prevalence in commercial systems 
and because of its desirable characteristic of being recov- 
erable and avoiding cascaded aborts. 

DRDB allows a user to enter multiple commands 
and have the results for all these commands returned 
together. The transaction facility therefore gives the user 
the ability to treat a group of commands as one atomic 
action. Adding the transaction facility requires the 
DRDB server to hold all command results until all 
commands of a transaction are completed. We follow the 
two-phase commit protocol for atomic commitment 
[Ber87]. 

A transaction in DRDB is characterized by its 
timing constraints and its computation requirements. The 
timing constraints are a release time ‘r’ and deadline ‘d’. 
The release time is the time associated with the 
transmittal of the transaction by a client site. A 
computation requirement is represented by a run-time 
estimate ‘rte’ which approximates the amount of 
computation, IO, and communication costs associated 
with processing a transaction. The deadline corresponds 
to the client-specified timing constraint. 

I rte 

4- time ---+ d 

The release time and deadline are known to the 
DRDB scheduler when a transaction arrives. The compu- 
tation requirements are calculated based on the operation 
being performed and the physical characteristics of the 
data involved. This information is made available prior to 
the scheduling decision being made. We think it is viable 
to estimate the execution time of a transaction without 

having prior knowledge of the exact data access pattern 
of a transaction. 

The goal of our system is to minimize the number 
of transactions that miss their deadlines, i.e., that finish 
after time ‘d’. If transactions can miss deadlines, one 
must address the issue as to what happens to transactions 
that have already missed their deadlines but have not yet 
finished. There are two alternatives. One is to assume 
that a transaction that has missed its deadline can be 
aborted. This may be reasonable where the value of a 
transaction is dependent on the timeliness of the return 
response. For example, suppose that a transaction is sub- 
mitted to update the ballistic path of a projectile based on 
a radar sensing. If the deadline is missed, it may be more 
desirable not to perform the operation of updating the 
ballistic path, but instead to re-submit the update request 
based on a newer sensor reading. The conditions that led 
to the triggering of the transaction may have changed. 
The initiator of the transaction may be better served if the 
transaction is re-submittcd. 

A second option is to assume that all transactions 
must eventually be completed, regardless of whether 
they have missed their deadlines. This may be a correct 
approach in an application such as banking where a cus- 
tomer would rather have his financial transaction done 
late rather than not at all. If the decision is made to pro- 
cess the transaction, there is still the issue of the priority 
of tardy transactions with respect to other transactions in 
the system. Transactions which cannot meet their dead- 
lines could receive a higher priority as their lateness 
increases, or they could be postponed to a later more con- 
venient time. 

The DRDB implementation decision was a com- 
bination of the two approaches. When a transaction 
enters the system, a determination is made as to whether 
a transaction can be executed within the temporal con- 
straint associated with it. If the transaction cannot meet 
its deadline, it is aborted. This has the nice property of 
not allowing computation time to be expended on trans- 
actions which cannot meet their deadlines, even with the 
best effort. To allow such transactions into the system 
can adversely affect overall system performance espe- 
cially during high load periods. Aborting a few late trans- 
actions helps all other transactions meet their deadlines, 
by eliminating the competition for resources by tardy 
transactions. Once a transaction has bcen acceptcd for 
processing, it is executed to completion, regardless as to 
whether or not a deadline has been met. This approach 
was adopted as a means of validating the run-time esti- 
mates derived by the scheduler. 

4.Scheduling Policies and Run-Time Estimates 
The DRDB scheduling algorithms have three 

components: a policy to determine which tasks are eligi- 
ble for service, a policy for assigning priorities to tasks, 
and a conflict resolution policy. Only the first two poli- 
cies are explored in the remainder of this paper. 

4.1.Scheduling Policies 
The DRDB scheduler is invoked whenever a 

transaction enters the system or terminates. The sched- 
uler can also be invoked to resolve contention (for either 
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the CPU or data) when conflicts occur between transac- 
tions. The first task of the scheduler is to divide the set of 
ready transactions into two categories, those transactions 
that are capable of meeting their temporal constraints 
(eligible) and those that cannot meet their temporal con- 
straints (ineligible). All ineligible transactions are 
aborted and the client is informed of the decision. This 
approach differs from the non-tardy policy [Abb92] 
which accepts transactions that are currently not late, but 
may be in a position where it is physically impossible to 
make their deadlines. Only those transactions withfeasi- 
ble deadlines are considered to be eligible. A tiransaction 
has a feasible deadline if its deadline is less than or equal 
to the current time plus its run-time estimate: 

current time (t) + run-time estimate (rte) I deadline (d) 

This policy can be adapted to account for the amount of 
service time a transaction has already received. The mod- 
ified policy would be as follows: 

current time (t) + rte - service time(p) I deadliine (d) 

where p equals the amount of service time a transaction 
has accumulated. This modified policy allows transac- 
tions to be screened for eligibility during the course of 
execution. Transactions that have been blocked, due to 
either data or CPU contention, could be re-evaluated to 
determine if they are still capable of meeting their tem- 
poral constraint. Note that the succesi of both of these 
policies is contingent on the accuracy of the run-time 
estimate. Erroneous run-time estimates which lover-esti- 
mate the actual computational requirements will cause 
transactions to be aborted needlessly. Low estimates can 
degrade system performance by allowing transactions, 
which in reality cannot meet temporal constraints, to 
compete for system resources among transactions which 
are trying to meet deadlines. 

There are many ways for assigning priorities to 
real-time tasks. Three policies extensively studied by 
earlier researchers include First Come First Serve 
(FCFS), Earliest Deadline (ED) and Leas’t SLack.(LS) 
[Abb92]. The primary weakness of FCFS is that it does 
not make use of deadline information. It discriminates 
against a newly arrived task with an urgent deadline in 
favor of an older task which may not have such an urgent 
deadline. The ED policy has shown itself to be effective 
in certain applications, but it fails to take into account the 
run-time estimates. The LS priority assignment policy 
was adopted for DRDB. The slack time for a transaction 
is an estimate of how long we can delay the execution of 
a transaction and still meet its deadline. It is computed by 
subtracting the current time plus the run-time estimate 
from the deadline of the transaction: 

Slack (s)  = deadline (d) - (current time (t) + rte) 

The smaller the slack, the higher the priority. A 
negative slack time is an indication that it is physically 
impossible for the transaction to meet its deadline. This 
,priority assignment policy does not take the amount of 
prior service time into account. The assignment (of prior- 
ity is static, occurring once when the transaction enters 

the system. The priority computed at that time remains 
with the transaction throughout its execution life. A con- 
tinuous LS policy could be used which does take service 
time into account. The continuous evaluation of priori- 
ties causes the LS of all active transaction to be recom- 
puted whenever there is contention for processor or data. 

A negative slack time could occur if a transaction 
has already missed its deadline or is about to miss its 
deadline. The possibility of a negative slack time does 
not exist if a feasible deadline eligibility screening policy 
is implemented, and the LS priority assignment policy is 
static. The initial screening conducted to determine eligi- 
bility will eliminate any transaction which cannot physi- 
cally meet their deadlines and the static LS priority will 
prevent the slack associated with an eligible transaction 
from ever becoming negative. The current DRDB ver- 
sion uses static LS as the means of assigning priorities to 
transactions for scheduling, in an attempt to expedite 
those transactions which can least afford to be delayed. 

4.2.Run-Time Estimates 
Conventional real-time systems typically deal 

with processes that have predictable resource require- 
ments. These predictable requirements allow for a static 
evaluation of computation costs. Real-time databases 
normally deal with transactions which have unpredict- 
able resource requirements. The random nature of such 
data accesses complicates the scheduling process in real- 
time database systems. A considerable amount of 
research effort has been focused on real-time database 
scheduling issues and the use of run-time estimates. The 
use of run-time estimates in scheduling decisions have 
been examined in workload screening, priority assign- 
ment, conflict resolution and IO scheduling policies. The 
results from the research conducted to date have indi- 
cated that run-time estimates are a viable option for 
improving scheduling decisions [Abb92, Sha91, Son921. 
The fact that critical information such as run-time costs 
can improve scheduling decisions and subsequently 
overall system performance is quite intuitive. However, 
the derivation of run-time estimates is not straightfor- 
ward, and have typically been derived from simulation 
models. The derivation and use of run-time estimates in 
a functional real-time database system has not been 
appropriately explored. 

One of the goals in the design of DRDB was to 
derive credible run-time estimates and to integrate those 
estimates in scheduling decisions. The approach we used 
was to exploit the physical characteristics of the data 
(such as attribute types, number of attributes in a relation, 
and the numbers of tuples in a relation) being manipu- 
lated, along with the type of database operation being 
performed (such as union, set difference and project), in 
an attempt to derive credible run-time estimates. While 
the arrival and types of transactions entering the system 
and the data which they access may be random, the com- 
putation steps involved in providing the appropriate 
response are not unpredictable. The steps required to 
execute any DRDB command is static in nature, and in a 
simplified outlook, only the number of iterations 
involved is dynamic. 

The dynamic nature of the computation is depen- 
dent on the number and types of attributes involved, 
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along with the number of tuples which constitute a rela- 
tion. For example, the run-time cost for selecting values 
from a relation consisting of only a single tuple is mini- 
mal. It consists of basic start-up costs (such as transmit- 
ting the command, preprocessing, opening of relations, 
and reading in the data from disk), the actual computation 
cost in selecting that single value, and basic terminating 
operations (such as providing the transaction results). The 
run-time cost for selecting the same set of values from a 
relation of five hundred tuples entails the same basic costs 
associated with opening and closing operations for a sin- 
gle tuple relation, only the computation costs increase in 
relation to the number of tuples that have to be processed. 

Other factors such as system load and data con- 
flicts do not affect the run-time costs associated with a 
given transaction. Such factors only increase the compe- 
tition for system resources, such as the CPU and IO 
access. For example, given the cost for selecting values 
from a given relation is ‘2’ time units. If half that time is 
consumed, and that select operation is subsequently 
blocked by a higher priority transaction whether it be for 
CPU or data contention reasons, it will still require ‘1’ 
time unit to complete once it becomes unblocked. 

With this approach, we ran numerous performance 
measurements tests to capture the run-time costs. The 
results indicate that viable run-time estimates could be 
derived based on the physical characteristics of the data 
being manipulated and the operation being performed. 
The results which follow are a small extract from those 
numerous run-time cost analysis experiments. 

4.3.Performance Results 
The results of run-time estimate performance mea- 

surements for four basic DRDB commands (project, 
select, union, average) are given in Figure 1. The x-axis of 
Figure 1 is the total number of tuples processed by the 
operation. The y-axis is the total elapsed time from the 
start of the operation until the final result is received at the 
client node. The performance measurements were con- 

ducted in an attempt to isolate the cost factors attributable 
to the operations performed, and the size of the data pro- 
cessed (measured by the number of tuples in the rela- 
tions). The operations were initiated from a separate 
client node, transmitted to the server node, and the appro- 
priate results returned back to the client. The run-time 
costs account for activities from the initiation of the oper- 
ation to the receipt of the appropriate result. The results 
shown are based on 200 performance measurements for 
each of the operations and relation sizes shown. The large 
sample measurement size was required to validate the 
results produced. 

The results show that the project and select opera- 
tion run-time costs grow in a linear fashion in relation to 
the size of the data being processed. The union operation 
run-time cost grows exponentially in relation to the size of 
the data being processed. The run-time cost is the mean of 
the 200 performance measurements. There was minimal 
deviation between the mean run-time cost and the perfor- 
mance measurements used in deriving the mean, usually 
with 90% of the performance measurements falling 
within f10% of the mean. The deviation which did occur 
between measurements can be attributed to the limited 
clock granularity of the hardware involved, and to unpre- 
dictable behavior of the underlying operating system. 

Our run-time cost results did show that run-time 
estimates could be derived not only based on the database 
operation being performed and relation size, but also on 
the number and types of attributes which make-up rela- 
tions. However, the results also showed that such derived 
run-time estimates were heuristic in nature, and that no 
guarantee could be made that a given transaction’s actual 
run-time cost would be as estimated. One of the primary 
contributing factors was the support of the underlying 
operating system. However, it is still possible to establish 
functions which generate acceptably accurate run-time 
estimates based on the physical characteristics of the data 
and the operations being executed, and that is what is 
implemented in the DRDB system. 

... . . . . . ... .. . . . . . . . ... . . . . .. . .. . . . .. . . . . . . .. . . .. . . . .. _ _  ... .. . . ... . _ _  . . . .. . .. . . . ... . 
0 50 100 150 200 250 

11 of tGp1es 

Figure 1 : DRDB run-time costs for local operations 
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The DRDB system maintains data on the physical 
characteristics of the relations in the database. When the 
scheduler is invoked it extracts the physical characteris- 
tics data for the relations being processed by a given 
transaction. This information is used in conjunction with 
the operation being performed to derive a run-time esti- 
mate. The run-time estimate is subsequently used in sys- 
tem scheduling decisions. While no guarantele can be 
made for a given transaction, it is possible to state that a 
given percentage of transactions can complete within the 
run-time estimate generated by the system. Additionally, 
it can be stated that the run-time estimates generated will 
be within a given percentage of the actual run-time costs. 
For example, raising the system generated run-time esti- 
mates by 10% resulted in approximately 90% of the 
transactions accepted for processing by DRDB having 
actual run-time costs within the system generated values. 
The down-side of raising the estimate is that some trans- 
actions, whose actual run-time cost is below the system 
generated estimate, may be needlessly aborted. The per- 
centage of these depends on the tightness of the temporal 
deadlines attached to the transactions. 

5.Conclusions 

A real-time database server is one of the critical 
components of real-time systems, in which tasks are 
associated with deadlines and a significant portion of 
data is highly perishable in the sense that it has value to 
the system only if it is used quickly. To satisfy thle timing 
requirements, transactions must be scheduled consider- 
ing not only the consistency requirements but also their 
temporal constraints. In addition, the system should be 
predictable, such that the possibility of missing a dead- 
line for a given transaction can be determined prior to the 
execution of that transaction or before that transaction’s 
deadline expires. 

In this paper, we have presented a relational data- 
base server which possesses temporal functionality, 
developed for investigating real-time database: issues. 
Since the characteristics of a real-time database inanager 
are distinct from conventional database managers, there 
are different issues to be considered in developing areal- 
time database server. For example, the use of run-time 
estimates in scheduling policies, and the ability to place 
temporal consistency constraints on database operations 
are important in real-time databases. DX)B was 
designed with the goal of providing an operational plat- 
form for conducting research on real-time database 
issues. Previous studies using simulated environments 
have provided valuable information with respeci to real- 
time database issues. However, performance results in 
some of the simulated studies are sometimes contradic- 
tory with each other since they made different ;issump- 
tions about system environments [Best96]. We believe 
that an operational environment for investigating real- 
time database issues will eliminate some of the problems 
associated with simulated systems and provide valuable 
and applicable insights to real-time database issues. 

The DRDB system provides a foundation for 
studying real-time database issues in an operational 
environment. The results achieved in deriving and apply- 
ing heuristic run-time estimates and the ability to attach 
temporal consistency specifications are promising. How- 

ever, there remains many technical issues associated with 
real-time databases that need further investigation. We 
plan to work on analyzing various conflict resolution 
mechanisms and improving the temporal functionality. 
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